Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Proc Natl Acad Sci U S A ; 119(32): e2205690119, 2022 08 09.
Article in English | MEDLINE | ID: covidwho-2311515

ABSTRACT

The furin cleavage site (FCS), an unusual feature in the SARS-CoV-2 spike protein, has been spotlighted as a factor key to facilitating infection and pathogenesis by increasing spike processing. Similarly, the QTQTN motif directly upstream of the FCS is also an unusual feature for group 2B coronaviruses (CoVs). The QTQTN deletion has consistently been observed in in vitro cultured virus stocks and some clinical isolates. To determine whether the QTQTN motif is critical to SARS-CoV-2 replication and pathogenesis, we generated a mutant deleting the QTQTN motif (ΔQTQTN). Here, we report that the QTQTN deletion attenuates viral replication in respiratory cells in vitro and attenuates disease in vivo. The deletion results in a shortened, more rigid peptide loop that contains the FCS and is less accessible to host proteases, such as TMPRSS2. Thus, the deletion reduced the efficiency of spike processing and attenuates SARS-CoV-2 infection. Importantly, the QTQTN motif also contains residues that are glycosylated, and disruption of its glycosylation also attenuates virus replication in a TMPRSS2-dependent manner. Together, our results reveal that three aspects of the S1/S2 cleavage site-the FCS, loop length, and glycosylation-are required for efficient SARS-CoV-2 replication and pathogenesis.


Subject(s)
COVID-19 , Furin , Proteolysis , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Amino Acid Motifs/genetics , Animals , COVID-19/virology , Chlorocebus aethiops , Furin/chemistry , Humans , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Sequence Deletion , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Vero Cells , Virus Replication/genetics
2.
Microbiol Spectr ; 11(3): e0037823, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2277255

ABSTRACT

Several viruses have been shown to modulate the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2), the master regulator of redox homeostasis. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the COVID-19 pandemic, also seems to disrupt the balance between oxidants and antioxidants, which likely contributes to lung damage. Using in vitro and in vivo models of infection, we investigated how SARS-CoV-2 modulates the transcription factor NRF2 and its dependent genes, as well as the role of NRF2 during SARS-CoV-2 infection. We found that SARS-CoV-2 infection downregulates NRF2 protein levels and NRF2-dependent gene expression in human airway epithelial cells and in lungs of BALB/c mice. Reductions in cellular levels of NRF2 seem to be independent of proteasomal degradation and the interferon/promyelocytic leukemia (IFN/PML) pathway. Furthermore, lack of the Nrf2 gene in SARS-CoV-2-infected mice exacerbates clinical disease, increases lung inflammation, and is associated with a trend toward increased lung viral titers, indicating that NRF2 has a protective role during this viral infection. In summary, our results suggest that SARS-CoV-2 infection alters the cellular redox balance by downregulating NRF2 and its dependent genes, which exacerbates lung inflammation and disease, therefore, suggesting that the activation of NRF2 could be explored as therapeutic approach during SARS-CoV-2 infection. IMPORTANCE The antioxidant defense system plays a major function in protecting the organism against oxidative damage caused by free radicals. COVID-19 patients often present with biochemical characteristics of uncontrolled pro-oxidative responses in the respiratory tract. We show herein that SARS-CoV-2 variants, including Omicron, are potent inhibitors of cellular and lung nuclear factor erythroid 2-related factor 2 (NRF2), the master transcription factor that controls the expression of antioxidant and cytoprotective enzymes. Moreover, we show that mice lacking the Nrf2 gene show increased clinical signs of disease and lung pathology when infected with a mouse-adapted strain of SARS-CoV-2. Overall, this study provides a mechanistic explanation for the observed unbalanced pro-oxidative response in SARS-CoV-2 infections and suggests that therapeutic strategies for COVID-19 may consider the use of pharmacologic agents that are known to boost the expression levels of cellular NRF2.


Subject(s)
Antioxidants , COVID-19 , Humans , Mice , Animals , Antioxidants/metabolism , SARS-CoV-2/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Disease Models, Animal , Pandemics , COVID-19/pathology , Lung , Epithelial Cells
3.
J Virol ; 97(2): e0153222, 2023 02 28.
Article in English | MEDLINE | ID: covidwho-2223571

ABSTRACT

Understanding the molecular basis of innate immune evasion by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important consideration for designing the next wave of therapeutics. Here, we investigate the role of the nonstructural protein 16 (NSP16) of SARS-CoV-2 in infection and pathogenesis. NSP16, a ribonucleoside 2'-O-methyltransferase (MTase), catalyzes the transfer of a methyl group to mRNA as part of the capping process. Based on observations with other CoVs, we hypothesized that NSP16 2'-O-MTase function protects SARS-CoV-2 from cap-sensing host restriction. Therefore, we engineered SARS-CoV-2 with a mutation that disrupts a conserved residue in the active site of NSP16. We subsequently show that this mutant is attenuated both in vitro and in vivo, using a hamster model of SARS-CoV-2 infection. Mechanistically, we confirm that the NSP16 mutant is more sensitive than wild-type SARS-CoV-2 to type I interferon (IFN-I) in vitro. Furthermore, silencing IFIT1 or IFIT3, IFN-stimulated genes that sense a lack of 2'-O-methylation, partially restores fitness to the NSP16 mutant. Finally, we demonstrate that sinefungin, an MTase inhibitor that binds the catalytic site of NSP16, sensitizes wild-type SARS-CoV-2 to IFN-I treatment and attenuates viral replication. Overall, our findings highlight the importance of SARS-CoV-2 NSP16 in evading host innate immunity and suggest a target for future antiviral therapies. IMPORTANCE Similar to other coronaviruses, disruption of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) NSP16 function attenuates viral replication in a type I interferon-dependent manner. In vivo, our results show reduced disease and viral replication at late times in the hamster lung, but an earlier titer deficit for the NSP16 mutant (dNSP16) in the upper airway. In addition, our results confirm a role for IFIT1 but also demonstrate the necessity of IFIT3 in mediating dNSP16 attenuation. Finally, we show that targeting NSP16 activity with a 2'-O-methyltransferase inhibitor in combination with type I interferon offers a novel avenue for antiviral development.


Subject(s)
Adaptor Proteins, Signal Transducing , Intracellular Signaling Peptides and Proteins , SARS-CoV-2 , Viral Nonstructural Proteins , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , COVID-19/virology , Interferon Type I/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Methyltransferases/metabolism , RNA-Binding Proteins/genetics , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Viral Nonstructural Proteins/metabolism , Animals , Cricetinae
6.
Viruses ; 14(9)2022 09 18.
Article in English | MEDLINE | ID: covidwho-2043979

ABSTRACT

The Delta variant of SARS-CoV-2 has caused many breakthrough infections in fully vaccinated individuals. While vaccine status did not generally impact the number of viral RNA genome copies in nasopharyngeal swabs of breakthrough patients, as measured by Ct values, it has been previously found to decrease the infectious viral load in symptomatic patients. We quantified the viral RNA, infectious virus, and anti-spike IgA in nasopharyngeal swabs collected from individuals asymptomatically infected with the Delta variant of SARS-CoV-2. Vaccination decreased the infectious viral load, but not the amount of viral RNA. Furthermore, vaccinees with asymptomatic infections had significantly higher levels of anti-spike IgA in their nasal secretions compared to unvaccinated individuals with asymptomatic infections. Thus, vaccination may decrease the transmission risk of Delta, and perhaps other variants, despite not affecting the amount of viral RNA measured in nasopharyngeal swabs.


Subject(s)
COVID-19 , Vaccines , Asymptomatic Infections , COVID-19/prevention & control , Humans , Immunoglobulin A , RNA, Viral/genetics , SARS-CoV-2/genetics , Vaccination , Viral Load
7.
Nat Commun ; 13(1): 5552, 2022 09 22.
Article in English | MEDLINE | ID: covidwho-2036823

ABSTRACT

One major limitation of neutralizing antibody-based COVID-19 therapy is the requirement of costly cocktails to reduce emergence of antibody resistance. Here we engineer two bispecific antibodies (bsAbs) using distinct designs and compared them with parental antibodies and their cocktail. Single molecules of both bsAbs block the two epitopes targeted by parental antibodies on the receptor-binding domain (RBD). However, bsAb with the IgG-(scFv)2 design (14-H-06) but not the CrossMAb design (14-crs-06) shows increased antigen-binding and virus-neutralizing activities against multiple SARS-CoV-2 variants as well as increased breadth of neutralizing activity compared to the cocktail. X-ray crystallography and cryo-EM reveal distinct binding models for individual cocktail antibodies, and computational simulations suggest higher inter-spike crosslinking potentials by 14-H-06 than 14-crs-06. In mouse models of infections by SARS-CoV-2 and multiple variants, 14-H-06 exhibits higher or equivalent therapeutic efficacy than the cocktail. Rationally engineered bsAbs represent a cost-effective alternative to antibody cocktails and a promising strategy to improve potency and breadth.


Subject(s)
Antibodies, Bispecific , COVID-19 Drug Treatment , Animals , Antibodies, Neutralizing , Antibodies, Viral , Epitopes , Immunoglobulin G , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
8.
Nat Commun ; 13(1): 4337, 2022 07 27.
Article in English | MEDLINE | ID: covidwho-1960370

ABSTRACT

We report a live-attenuated SARS-CoV-2 vaccine candidate with (i) re-engineered viral transcription regulator sequences and (ii) deleted open-reading-frames (ORF) 3, 6, 7, and 8 (∆3678). The ∆3678 virus replicates about 7,500-fold lower than wild-type SARS-CoV-2 on primary human airway cultures, but restores its replication on interferon-deficient Vero-E6 cells that are approved for vaccine production. The ∆3678 virus is highly attenuated in both hamster and K18-hACE2 mouse models. A single-dose immunization of the ∆3678 virus protects hamsters from wild-type virus challenge and transmission. Among the deleted ORFs in the ∆3678 virus, ORF3a accounts for the most attenuation through antagonizing STAT1 phosphorylation during type-I interferon signaling. We also developed an mNeonGreen reporter ∆3678 virus for high-throughput neutralization and antiviral testing. Altogether, the results suggest that ∆3678 SARS-CoV-2 may serve as a live-attenuated vaccine candidate and a research tool for potential biosafety level-2 use.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Antiviral Agents , COVID-19/prevention & control , Cricetinae , Humans , Interferons , Mice , SARS-CoV-2/genetics , Vaccines, Attenuated , Virus Replication
9.
PLoS Pathog ; 18(6): e1010627, 2022 06.
Article in English | MEDLINE | ID: covidwho-1902650

ABSTRACT

While SARS-CoV-2 continues to adapt for human infection and transmission, genetic variation outside of the spike gene remains largely unexplored. This study investigates a highly variable region at residues 203-205 in the SARS-CoV-2 nucleocapsid protein. Recreating a mutation found in the alpha and omicron variants in an early pandemic (WA-1) background, we find that the R203K+G204R mutation is sufficient to enhance replication, fitness, and pathogenesis of SARS-CoV-2. The R203K+G204R mutant corresponds with increased viral RNA and protein both in vitro and in vivo. Importantly, the R203K+G204R mutation increases nucleocapsid phosphorylation and confers resistance to inhibition of the GSK-3 kinase, providing a molecular basis for increased virus replication. Notably, analogous alanine substitutions at positions 203+204 also increase SARS-CoV-2 replication and augment phosphorylation, suggesting that infection is enhanced through ablation of the ancestral 'RG' motif. Overall, these results demonstrate that variant mutations outside spike are key components in SARS-CoV-2's continued adaptation to human infection.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/genetics , Glycogen Synthase Kinase 3 , Humans , Mutation , Nucleocapsid , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
10.
Cell Rep ; 39(7): 110829, 2022 05 17.
Article in English | MEDLINE | ID: covidwho-1814236

ABSTRACT

We report that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta spike mutation P681R plays a key role in the Alpha-to-Delta variant replacement during the coronavirus disease 2019 (COVID-19) pandemic. Delta SARS-CoV-2 efficiently outcompetes the Alpha variant in human lung epithelial cells and primary human airway tissues. The Delta spike mutation P681R is located at a furin cleavage site that separates the spike 1 (S1) and S2 subunits. Reverting the P681R mutation to wild-type P681 significantly reduces the replication of the Delta variant to a level lower than the Alpha variant. Mechanistically, the Delta P681R mutation enhances the cleavage of the full-length spike to S1 and S2, which could improve cell-surface-mediated virus entry. In contrast, the Alpha spike also has a mutation at the same amino acid (P681H), but the cleavage of the Alpha spike is reduced compared with the Delta spike. Our results suggest P681R as a key mutation in enhancing Delta-variant replication via increased S1/S2 cleavage.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/genetics , Humans , Mutation/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
12.
Clin Biochem ; 101: 19-25, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1682990

ABSTRACT

BACKGROUND: Current serological methods for SARS-CoV-2 lack adequate standardization to a universal standard reference material. Standardization will allow comparison of results across various lab-developed and commercial assays and publications. SARS-CoV-2 EURM-017 is human sera reference material containing antibodies directed against SARS-CoV-2 proteins, S1/S2 (full-length spike [S]), S1 receptor-binding domain (S1 RBD), S1, S2, and nucleocapsid (N) protein. The goal of this study was to characterize five antigen-specific serum fractions in EURM-017 for standardization of serology assays. METHODS: Five antigen-specific serum fractions were affinity purified, quantified, and PRNT50 titers compared. Standardization methods were established for two anti-S1 RBD (IgG and Total Ig) and one N protein assay. For the anti-S1 RBD assays, standardization involved determining assay index values for serial dilutions of S1-RBD anti-sera. Index values for the anti-S1 RBD IgG assay and PRNT50 titers were determined for 44 symptomatic COVID-19 patient sera. The index values were converted to EURM-017 ug/mL. RESULTS: Anti-sera protein content was as follows: S1 (17.7 µg/mL), S1 RBD (17.4 µg/mL), S1/S2 (full-length S) (34.1 µg/mL), S2 (29.7 µg/mL), and N protein (72.5 µg/mL). S1 anti-serum had the highest neutralization activity. A standardization method for S1 RBD anti-serum and an anti-S1 RBD IgG assay yielded the linear equation (y = 0.75x-0.10; y = index, x=µg/mL anti-serum). Patient sample index values for the S1-RBD IgG assay correlated well with PRNT50 titers (Pearson r = 0.84). Using the equation above, patient index values were converted to standardized µg/mL. CONCLUSIONS: Standardization of different lab-developed and commercial assays to EURM-017 antigen-specific anti-sera will allow comparison of results across studies globally due to traceability to a single standard reference material.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/standards , COVID-19/diagnosis , SARS-CoV-2/immunology , COVID-19/blood , COVID-19 Serological Testing/methods , Humans , Immunoassay/standards , Immunoglobulin G/blood , Reference Standards
13.
Science ; 374(6575): 1557-1558, 2021 Dec 24.
Article in English | MEDLINE | ID: covidwho-1594511

ABSTRACT

Virus-like particles offer a new way to investigate genetic variation in SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans
14.
Nature ; 602(7896): 294-299, 2022 02.
Article in English | MEDLINE | ID: covidwho-1532071

ABSTRACT

The B.1.1.7 variant (also known as Alpha) of SARS-CoV-2, the cause of the COVID-19 pandemic, emerged in the UK in the summer of 2020. The prevalence of this variant increased rapidly owing to an increase in infection and/or transmission efficiency1. The Alpha variant contains 19 nonsynonymous mutations across its viral genome, including 8 substitutions or deletions in the spike protein that interacts with cellular receptors to mediate infection and tropism. Here, using a reverse genetics approach, we show that of the 8 individual spike protein substitutions, only N501Y resulted in consistent fitness gains for replication in the upper airway in a hamster model as well as in primary human airway epithelial cells. The N501Y substitution recapitulated the enhanced viral transmission phenotype of the eight mutations in the Alpha spike protein, suggesting that it is a major determinant of the increased transmission of the Alpha variant. Mechanistically, the N501Y substitution increased the affinity of the viral spike protein for cellular receptors. As suggested by its convergent evolution in Brazil, South Africa and elsewhere2,3, our results indicate that N501Y substitution is an adaptive spike mutation of major concern.


Subject(s)
Amino Acid Substitution , COVID-19/transmission , COVID-19/virology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Animals , Binding, Competitive , Bronchi/cytology , Cells, Cultured , Cricetinae , Humans , Male , Mesocricetus , Models, Molecular , Mutation , Protein Binding , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Virus Replication
15.
mBio ; 12(6): e0274921, 2021 12 21.
Article in English | MEDLINE | ID: covidwho-1506962

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a historic pandemic of respiratory disease (coronavirus disease 2019 [COVID-19]), and current evidence suggests that severe disease is associated with dysregulated immunity within the respiratory tract. However, the innate immune mechanisms that mediate protection during COVID-19 are not well defined. Here, we characterize a mouse model of SARS-CoV-2 infection and find that early CCR2 signaling restricts the viral burden in the lung. We find that a recently developed mouse-adapted SARS-CoV-2 (MA-SARS-CoV-2) strain as well as the emerging B.1.351 variant trigger an inflammatory response in the lung characterized by the expression of proinflammatory cytokines and interferon-stimulated genes. Using intravital antibody labeling, we demonstrate that MA-SARS-CoV-2 infection leads to increases in circulating monocytes and an influx of CD45+ cells into the lung parenchyma that is dominated by monocyte-derived cells. Single-cell RNA sequencing (scRNA-Seq) analysis of lung homogenates identified a hyperinflammatory monocyte profile. We utilize this model to demonstrate that mechanistically, CCR2 signaling promotes the infiltration of classical monocytes into the lung and the expansion of monocyte-derived cells. Parenchymal monocyte-derived cells appear to play a protective role against MA-SARS-CoV-2, as mice lacking CCR2 showed higher viral loads in the lungs, increased lung viral dissemination, and elevated inflammatory cytokine responses. These studies have identified a potential CCR2-monocyte axis that is critical for promoting viral control and restricting inflammation within the respiratory tract during SARS-CoV-2 infection. IMPORTANCE SARS-CoV-2 has caused a historic pandemic of respiratory disease (COVID-19), and current evidence suggests that severe disease is associated with dysregulated immunity within the respiratory tract. However, the innate immune mechanisms that mediate protection during COVID-19 are not well defined. Here, we characterize a mouse model of SARS-CoV-2 infection and find that early CCR2-dependent infiltration of monocytes restricts the viral burden in the lung. We find that SARS-CoV-2 triggers an inflammatory response in the lung characterized by the expression of proinflammatory cytokines and interferon-stimulated genes. Using RNA sequencing and flow cytometry approaches, we demonstrate that SARS-CoV-2 infection leads to increases in circulating monocytes and an influx of CD45+ cells into the lung parenchyma that is dominated by monocyte-derived cells. Mechanistically, CCR2 signaling promoted the infiltration of classical monocytes into the lung and the expansion of monocyte-derived cells. Parenchymal monocyte-derived cells appear to play a protective role against MA-SARS-CoV-2, as mice lacking CCR2 showed higher viral loads in the lungs, increased lung viral dissemination, and elevated inflammatory cytokine responses. These studies have identified that the CCR2 pathway is critical for promoting viral control and restricting inflammation within the respiratory tract during SARS-CoV-2 infection.


Subject(s)
Lung/immunology , Pneumonia, Viral/prevention & control , Receptors, CCR2/immunology , SARS-CoV-2/immunology , Signal Transduction/immunology , Animals , COVID-19 , Cytokines/immunology , Disease Models, Animal , Female , Immunity, Innate , Inflammation , Lung/cytology , Lung/virology , Mice , Mice, Inbred C57BL , Monocytes/immunology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , SARS-CoV-2/genetics , Viral Load , Virus Replication/immunology
16.
PLoS Biol ; 19(11): e3001284, 2021 11.
Article in English | MEDLINE | ID: covidwho-1502046

ABSTRACT

The emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has resulted in a pandemic causing significant damage to public health and the economy. Efforts to understand the mechanisms of Coronavirus Disease 2019 (COVID-19) have been hampered by the lack of robust mouse models. To overcome this barrier, we used a reverse genetic system to generate a mouse-adapted strain of SARS-CoV-2. Incorporating key mutations found in SARS-CoV-2 variants, this model recapitulates critical elements of human infection including viral replication in the lung, immune cell infiltration, and significant in vivo disease. Importantly, mouse adaptation of SARS-CoV-2 does not impair replication in human airway cells and maintains antigenicity similar to human SARS-CoV-2 strains. Coupled with the incorporation of mutations found in variants of concern, CMA3p20 offers several advantages over other mouse-adapted SARS-CoV-2 strains. Using this model, we demonstrate that SARS-CoV-2-infected mice are protected from lethal challenge with the original Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), suggesting immunity from heterologous Coronavirus (CoV) strains. Together, the results highlight the use of this mouse model for further study of SARS-CoV-2 infection and disease.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Animals , COVID-19/pathology , COVID-19 Vaccines/therapeutic use , Cell Line , Disease Models, Animal , Female , Humans , Lung/pathology , Mice , Mice, Inbred BALB C , Reverse Genetics , Serial Passage , Virus Replication
17.
Elife ; 102021 09 28.
Article in English | MEDLINE | ID: covidwho-1441361

ABSTRACT

High-throughput genomics of SARS-CoV-2 is essential to characterize virus evolution and to identify adaptations that affect pathogenicity or transmission. While single-nucleotide variations (SNVs) are commonly considered as driving virus adaption, RNA recombination events that delete or insert nucleic acid sequences are also critical. Whole genome targeting sequencing of SARS-CoV-2 is typically achieved using pairs of primers to generate cDNA amplicons suitable for next-generation sequencing (NGS). However, paired-primer approaches impose constraints on where primers can be designed, how many amplicons are synthesized and requires multiple PCR reactions with non-overlapping primer pools. This imparts sensitivity to underlying SNVs and fails to resolve RNA recombination junctions that are not flanked by primer pairs. To address these limitations, we have designed an approach called 'Tiled-ClickSeq', which uses hundreds of tiled-primers spaced evenly along the virus genome in a single reverse-transcription reaction. The other end of the cDNA amplicon is generated by azido-nucleotides that stochastically terminate cDNA synthesis, removing the need for a paired-primer. A sequencing adaptor containing a Unique Molecular Identifier (UMI) is appended to the cDNA fragment using click-chemistry and a PCR reaction generates a final NGS library. Tiled-ClickSeq provides complete genome coverage, including the 5'UTR, at high depth and specificity to the virus on both Illumina and Nanopore NGS platforms. Here, we analyze multiple SARS-CoV-2 isolates and clinical samples to simultaneously characterize minority variants, sub-genomic mRNAs (sgmRNAs), structural variants (SVs) and D-RNAs. Tiled-ClickSeq therefore provides a convenient and robust platform for SARS-CoV-2 genomics that captures the full range of RNA species in a single, simple assay.


Subject(s)
Base Sequence , Coronavirus/genetics , Genome, Viral , RNA , SARS-CoV-2/genetics , COVID-19/virology , DNA, Complementary , Gene Library , Genomics , High-Throughput Nucleotide Sequencing , Humans , Nanopores , Polymerase Chain Reaction , RNA, Messenger , RNA, Viral/genetics , Recombination, Genetic , Whole Genome Sequencing
18.
Transfusion ; 61(1): 17-23, 2021 01.
Article in English | MEDLINE | ID: covidwho-1388418

ABSTRACT

BACKGROUND: The transfer of passive immunity with convalescent plasma is a promising strategy for treatment and prevention of COVID-19, but donors with a history of nonsevere disease are serologically heterogenous. The relationship between SARS-Cov-2 antigen-binding activity and neutralization activity in this population of donors has not been defined. STUDY DESIGN AND METHODS: Convalescent plasma units from 47 individuals with a history of nonsevere COVID-19 were assessed for antigen-binding activity of using three clinical diagnostic serology assays (Beckman, DiaSorin, and Roche) with different SARS-CoV-2 targets. These results were compared with functional neutralization activity using a fluorescent reporter strain of SARS-CoV-2 in a microwell assay. RESULTS: Positive correlations of varying strength (Spearman r = 0.37-0.52) between antigen binding and viral neutralization were identified. Donors age 48 to 75 years had the highest neutralization activity. Units in the highest tertile of binding activity for each assay were enriched (75%-82%) for those with the highest levels of neutralization. CONCLUSION: The strength of the relationship between antigen-binding activity and neutralization varies depending on the clinical assay used. Units in the highest tertile of binding activity for each assay are predominantly comprised of those with the greatest neutralization activity.


Subject(s)
SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/therapy , COVID-19 Serological Testing , Enzyme-Linked Immunosorbent Assay , Humans , Immunization, Passive , Immunoglobulin G/immunology , SARS-CoV-2/pathogenicity , Serologic Tests , COVID-19 Serotherapy
20.
Nat Commun ; 12(1): 3587, 2021 06 11.
Article in English | MEDLINE | ID: covidwho-1387350

ABSTRACT

There is a great need for the development of vaccines that induce potent and long-lasting protective immunity against SARS-CoV-2. Multimeric display of the antigen combined with potent adjuvant can enhance the potency and longevity of the antibody response. The receptor binding domain (RBD) of the spike protein is a primary target of neutralizing antibodies. Here, we developed a trimeric form of the RBD and show that it induces a potent neutralizing antibody response against live virus with diverse effector functions and provides protection against SARS-CoV-2 challenge in mice and rhesus macaques. The trimeric form induces higher neutralizing antibody titer compared to monomer with as low as 1µg antigen dose. In mice, adjuvanting the protein with a TLR7/8 agonist formulation alum-3M-052 induces 100-fold higher neutralizing antibody titer and superior protection from infection compared to alum. SARS-CoV-2 infection causes significant loss of innate cells and pathology in the lung, and vaccination protects from changes in innate cells and lung pathology. These results demonstrate RBD trimer protein as a suitable candidate for vaccine against SARS-CoV-2.


Subject(s)
Adjuvants, Immunologic/administration & dosage , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , Heterocyclic Compounds, 3-Ring/administration & dosage , Stearic Acids/administration & dosage , Alum Compounds/administration & dosage , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation/immunology , COVID-19 Vaccines/administration & dosage , Disease Models, Animal , Heterocyclic Compounds, 3-Ring/immunology , Humans , Macaca mulatta , Mice , Protein Binding , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/immunology , Stearic Acids/immunology
SELECTION OF CITATIONS
SEARCH DETAIL